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EFFECT OF AN INFLECTION IN THE PROFILE OF MEAN VELOCITY ON THE 

RESONANCE INTERACTION OF PERTURBATIONS IN A BOUNDARY LAYER 

M. B. Zel'man and B. V. Smorodskii UDC 532.526 

The character of the laminar-turbulent transition (LTT) in shear flows depends to a 
considerable extent on the distribution of the vorticity of the average motion. According to 
the linear theory of stability, the appearance of extrema in such distributions (points of 
inflection in the velocity profile) leads to expansion of the spectrum and an increase in the 
increments of unstable pulsations that are already taking place (see [i, 2]). Both the time 
of formation of the nonlinear regime and the character of its occurrence are variable. 

The appearance of inflections may be due either to external flow conditions or to the 
nonlinear self-perturbation of "primary" waves in the flow. Examples of the effect of such 
mean flow singularities on the interaction of wave perturbations were examined in [3] for 
free shear layers and in [4] for pre-separation boundary layers. However, the laws governing 
the evolution of interacting waves under these conditions have yet to be definitively estab- 
lished. 

The goal of the present investigation is to explore features of the effect of the char- 
acteristics of inflected profiles on resonance wave interactions in boundary layers. The 
results that are obtained are used to interpret the mechanism responsible for preventing the 
occurrence of a subharmonic S-type transition with an increase in the level of the initial 
perturbations. 

We choose a flow with the profile UG(Y) [5] as the initial flow for studying the evolution 
of resonance perturbations. This flow models the motion of intensive eddies in a boundary 

layer: 

Ue (g) = U• + x(th (y - -  y~)/5 T l), y ~ g~- 
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Here, Yr determines the position of the point of inflection relative to the wall; • and 6 << 
1 characterize the magnitude and width of the inflection region; U+ corresponds to the solu- 
tions of the Blausius equation; U+_(y) = UB(Y) corresponds to the Blausius profile with • = 0. 
The choice of U G is dictated foremost by the simplicity of its connection with the parameters 

of the inflection. 

Remaining within the framework of the approximation of weakly linear theory, we repre- 
sent the flow field in the form U = (U(N), O~ O) -}- e(ul, u2, Ua) -~ O(~e-1), where quasi-harmonic 
perturbations with e << 1 can be written 

~ �9 /O h u.:; = ~ A ~ . ) ~ e  , / = t ,  2, 3, 
h 

~jk(Y) and O~ = [(z~dx + ~z -- e(o~, ~)-- i~(a~, ~) are determined from the solution of the Orr- 

Sommerfeld (OS) equation. In the first nonlinear approximation [6, 7], three-wave resonance 
interaction plays the leading role in the formation of the S-regime of the LTT in a Blausius 
boundary layer (UB). Here, the most intensive interaction takes place in symmetrica]l triads 
(k = I, 2, 3) including a plane wave (~, ~ = 0, ~z) and a pair of oblique Tollmien- 
Schlichting (TS) waves (~.3 ~ cq/2, ~ =--~a, c0~.a = oh/2 ) [6, 7]. The behavior of the amplitudes 
B k = AkeX p (7k t) in such a triad conforms to the system 

( tq 
( 1 . 1 )  

~ ~ - -  ,~ B = S t ~ B 3 , ~ h  (A), t~h0 = Bh (%). 

Here, 7 = ~2,3; Vl' V = V2,3, S and S~ are expressed through eigenfunctions of the direct 
and conjugate OS problems, while 

l ~ ( A ) = ~ .  ~ z e x p , i  Adz '  , A = % - - 2 % , a ,  t < < ~ X < < e  -1 
0 \ 0  

(X i s  t h e  a v e r a g i n g  i n t e r v a l ) .  

A c c o r d i n g  t o  c a l c u l a t i o n s ,  t h e  p a t t e r n  o f  e v o l u t i o n  o f  t h e  t r i a d  a t  • > 0 q u a l i t a t i v e l y  
r e p r o d u c e s  t h e  f e a t u r e s  of  i t s  m o t i o n  in  t h e  B l a u s i u s  f l o w .  A s e c t i o n  in  which  subha rmon ic  
s p a c e s  waves JB2,aI< IBll u n d e r g o  p a r a m e t r i c  pumping i s  f o l l o w e d  by e x p l o s i v e  deve lopmen t  o f  
t h e  n o n l i n e a r  s t a g e  atlB2,al>~ ]B~I (Fig. 1) .  The a p p e a r a n c e  and s u b s e q u e n t  d e v e l o p m e n t  o f  
t he  i n f l e c t i o n  (• > 0) may f a c i l i t a t e  i n t e n s i f i c a t i o n  o f  t h e  subha rmon ic  pumping,  m a i n l y  as  
a r e s u l t  o f  an i n c r e a s e  in ~ and u As was shown in  [ 2 ] ,  such  an i n c r e a s e  o c c u r s  a t  v a l u e s  
of  Yr b e l o n g i n g  t o  a c e r t a i n  f i n i t e  i n t e r v a l  ( 0 , 7 ~ g ~  ~,~2.5) w i t h i n  ( 0 ~ y < 5 )  t h e  b o u n d a r y  
l a y e r .  An i n c r e a s e  in  • a l s o  p r o m o t e s  a s l i g h t  i n c r e a s e  in  [ S ] .  W i t h i n  t h e  r a n g e  o f  p a r a -  
m e t e r s  i n v e s t i g a t e d  h e r e ,  t h e  dependence  o f  S on m and Re t u r n s  ou t  t o  be s l i g h t .  L i n e s  1-3 
in  F i g .  1 show v a l u e s  o f  B l ( x )  and B2, a = B(x)  f o r  F1 = 2Fa = 115"10 - a ,  g2/~2 = 1 a t  • = 0 
(unde fo rmed  b o u n d a r y  l a y e r  UB) ; Yr = 2, • = 2 %; y~ = 1, •  2 %. 

The a n g l e s  o f  p r o p a g a t i o n  ~ = a r c t a n  ~/~ have  a g r e a t e r  e f f e c t  on t h e  e f f i c i e n c y  of  t h e  
i n t e r a c t i o n .  The s o l i d  l i n e s  in  F i g .  2 show t h e  dependence  o f  t h e  pumping i n c r e m e n t s  o = 
~ in  I B I / a x  on t h e  p a r a m e t e r  t a n  ~ a t  Yr = 2, • = 0; 10% ( c u r v e s  1 and 2) f o r  d i f f e r e n t  pump- 
ing  a m p l i t u d e s  IB10 I . The dashed  l i n e s ,  c o r r e s p o n d i n g  t o  t h e  p o s i t i o n  max~ e (B10) ,  s h i f t  t o  
t h e  r e g i o n  of  g r e a t e r  ~ w i t h  an i n c r e a s e  in  • and become t h e  a s y m p t o t e  ~m ~ 71~ a t  •  10%. 
Thus, the presence of the inflection promotes more efficient excitation of the perturbation 
field in three dimensions, since at z = 0 the maximum increments correspond to ~{i0 ~ The 
universality of this statement is violated at Yr near the critical layer of the wave Yc ~ i. 
The relation ~m(• turns out to be nonmonotonic: at 0~• 2%, there is a decrease in Sm 
with an increase in • i.e., the configuration of the wave vector in the triad of maximally 
interacting waves becomes "flatter" compared to the boundary layer U B. With a further in- 
crease in the size of the inflection • , the angle Sm becomes the asymptote Sm = 71". Curves 
i and 2 in Fig. 3 show values of tanSm(• with Re = 625, F I = 115.10 -s and Yr = i~ 2. 

The above-examined features of the development of resonance triads concern a special 
type of flow UG, and their generality needs to be discussed. To this end, we examined flows 
with profiles approximating motion in the pre-separation zone of a boundary layer US(Y) [4] 
and flows seen in the transitional region with the LTT K-regime UK(Y) [8]. Here, as the 
parameter • (degree of inflection) we took the maximum deviation of these profiles from the 
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distribution UB(Y). The characteristics of the evolution of perturbations in the flow with U G 
are qualitatively reproduced in the flow UK: still valid are the intensification of subharmonic 
pumping in the triads and an increase in the limiting angles $m ($m § 70~ In contrast to the 
cases U G and UK, Sm z const in flows with reverse motion (the profile US). The latter finding 
is consistent with the results obtained in [4]. The transitional zone of the boundary layer 
on a smooth plate is characterized by an absence of reverse flows. The phenomena noted for U G 
are typical. 

However, in contrast to the Blausius flow, the efficiency of parametric resonance of the 
low-frequency (LF) oscillations does not guarantee their leading position in the spectrum (S- 
regime of LTT), since the inflection in the profile U(y) simultaneously sharply intensifies 
linear instability in the high-frequency (HF) region. It is obvious only that the parallel 
occurrence of these processes wil help accelerate the transition to turbulent flow. 

In the above study, we examined the interaction of "secondary" perturbations, i.e., per- 
turbations that evolve after %he formation of the inflection in the profile. Additional 
singularities may arise in the case of a profile inflection caused by the self-perturbation 
of an intensive Tollmien-Schlichting "primary" wave (~s, ~s + i~s)" Such an occurrence might 
be due to the formation of a nonlinear critical layer at Yr = Yc and, according to [9-11], 
might be accompanied by stabilization of the oscillations (Ys + O) with no change in the form 
of the velocity profile and with a dispersion coupling that is close to linear. Under these 
conditions, the dominant mechanism of interaction might turn out to be resonance of the pri- 
mary wave with background pulsations generated in accordance with the distorted mean profile. 

Staying within the framework of the above representations, we analyzed the efficiency 
of the parametric interaction of pairs of secondary LF perturbations (calculated for the 
profile U G with Yr z Yc and • in the field of a primary wave with a TS distribution. 
The equations which describe such a system differ from (i.I) in the values of the coefficients 
(the index s corresponds to a wave with k = i). Calculations of S showed that the increment 
of parametric pumping Op ~ ISBz01 under these conditions is close to the case of motion in a 
flow with x = 0 and is markedly lower than in triads of "secondary" oscillations. On the 
other hand, the distribution of max Op($) nearly coincides with the latter case. As a result, 
there is a possibility of a relative slowing of the growth of LF pulsations in the field of 
the "primary" TS wave. The total increment c = 7 + Op decreases due to stabilization of the 
linear instability (a decrease in u At • % (Yr ~Yc), this is a direct consequence of 
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the inflection [2], while at ~ > 2% it is the result of the rotation of ~ in the region of 
more oblique waves - larger values of B. Thus, the development of a nonlinear critical layer 
may be associated with the appearance of a mechanism which prevents the intensive excitation 
of LF oscillations through a decrease in 71 and 7- The effectiveness of this mechanism can 
be evaluated on the basis of the relations ~N = IB101 -I/2 and �9 = 17 + SBl01 -~ -- the charac- 
teristic times of the nonlinear critical layer and parametric amplification in the triad. 
Satisfaction of the inequality TN/~ s i establishes the upper bound of the quantity IBl01 for 
occurrence of an S-transition. Figure 4 offers a qualitative representation of the develop- 
ment of the triad (curves 1-3, respectively, show the amplitudes of a two-dimensional primary 
wave B l and three-dimensional subharmonic secondary waves B2, 3 with B/~ z 2 and 3; the dashed 
lines show the behavior of the subharmonics on the undeformed mean flow UB). If an inflec- 
tion • > 0 is formed in a certain section Re r of the boundary layer as a result of the de- 
velopment of a nonlinear critical layer, then the rate of growth of subharmonics with dif- 
ferent values of ~/~ will change (solid lines 2 and 3). Thus, the coordinate Re 0, where 
[B2,a(x)[ ~ ]B~(x) I, is displaced downstream toward R%. 

It is interesting that a TS primary wave has a direct effect on the development of HF 
pulsations - the linear instability of which is intensified considerably with an inflection 
U(y) within a broad spectral band. To analyze this phenomenon, we examined the resonance 
interaction of such "secondary" HF pulsations with Yr = Yc, z > 0 in the field of a TS wave 
(ms, ~s, Ss = 0). Perturbations of the }IF spectrum were approximated by a discrete set of 
harmonics with (~k, $), mk + iYk, mk• = mk • ms, belonging to the neighborhood (0~(x) with 
7o = maxTk. The system of amplitude equations takes the form 

d B  h 

+ 

It is evident from the calculations that the coefficients S~ increase with an increase in 
frequency ~k and the parameters $ and z. 

Figure 5 shows graphs of the amplitude relation B k = Bk(X) with Re = 1040, N = 5, Yr = 
2, • = 2%, ~ = 0, m s = 40.10 -6, m 0 = 400.10 -6 The numbers of the curves correspond to the 
k-th harmonic. The interaction has almost no effect on the rate of amplification of HF os- 
cillations (o k = Yk) and reduces to an exchange of energy between them. The latter is mani- 
fest in a rapid equalization of the amplitudes B k of a perturbation during the initial stage 
and their oscillation during development of the process. 

Thus, the appearance of an inflection in the mean-velocity profile of a boundary layer 
due to the development of an intensive TS wave creates the conditions necessary for slowing 
the growth of LF oscillations and the formation of subharmonics. At the same time, intensi- 
fication of three-dimensional oscillations in the HF part of the spectrum is facilitated. 
The study conducted here is of a qualitative nature, but the conclusions that were reached 
make it possible to discern the mechanism responsible for the disappearnce of the S-regime 
and the formation of the "high-frequency" types of LTT's seen in a boundary layer with an in- 
crease in the level of an induced wave [8]. 
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LONGITUDINAL VORTEX STRUCTURES AND HEAT TRANSFER IN THE REGION OF 

ATTACHMENT OF A SUPERSONIC TURBULENT BOUNDARY LAYER 

E. G. Zaulichnyi and V. M. Trofimov UDC 532.526:536.24 

The formation of longitudinal vortex structures in boundary layers of smpersonic flows 
has been observed in experiments conducted by several authors [1-7] who have studied the 
development of the separation region in plane, axisymmetric, internal, and external flows 
moving past a body. Both laminar and turbulent flow regimes have been studied in this re- 
gard. The development of structures usually termed Taylor-GSrtler (T-G) vortices in the 
neighborhood of the point of attachment in flows after a projection or after a separation 
point in constricted regions leads to a strictly ordered redistribution of processes involv- 
ing heat and momentum transfer and their periodic change in the direction transverse to the 
flow. Under conditions whereby heat transfer is intensified in attachment regions due to an 
increase in the level of turbulent pulsations [8], the development of secondary flows can 
lead to additional thermal loads in the regions of their peak values. 

From the viewpoint of the development of natural (internal) instabilities in a system, 
resulting in adaptation, the appearance of T-G vortices is one link in a chain of hierarchi- 
cal changes in the structure of a boundary layer. It is also significant that the result of 
loss of stability in the system - the creation of stationary vortices - can be stored in the 
"memory" of the flow far downstream from the immediate source of the instability. 

In the present investigation, we discuss experimental studies of three-dimensional fea- 
tures of flow and heat transfer due to T-G vortices. A second boundary layer of longitudinal 
structures is observed, the mechanism of its formation not being connected with vortices of 
the T-G type. 

Experimental Conditions. Measurements of pressure field and heat transfer on models of 
steps were conducted in the T-333 wind tunnel at the Institute of Theoretical and Applied 
Mechanics (of the Siberian Branch of the Soviet Academy of Sciences) with a jet 304 mm in 
diameter. The experiments were performed inside an Eifel chamber with the Mach numbers M l = 
2.0, 3.0, 4.0, and 5.0 for the incoming flow. The range of the Reynolds numbers Re I = (30- 
100).106 m -I, while the range of stagnation pressures p* = 180-1600 kPa. Stagnation tempera- 
ture T* varied within the range 260-270 K. 

The height of the step (Fig. la) located on the plate of width b = 120 mm was h = 6.0, 
6.4, and 15.0 mm. The angle of inclination of the face of the step ~ = 90, 25, and 65 ~ , 
respectively. The distance from the leading edge of the plate to the vertex of the angle of 
convergence was 177 mm. We glued a 4-mm-wide vortex generator to the plate 6 mm from its 
leading edge. The height of the sandy roughness of the generator was 0.2 mm. The character- 
istic thickness of the boundary layer in the undisturbed flow ahead of the interaction re- 
gion 61 = 2.1 mm. Limiter plates (flanges) 30 mm high were installed on the lateral walls 
of the model to prevent flows in the transverse direction. 

Measurements of the local heat-transfer coefficients were made by a modification of the 
electrocalorimetric method [9] in a complex which included an automatic data processing system 
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